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Abstract

We study the Rayleigh-B́enard stability problem for a fluid confined within a square enclosure subject to random perturbations in
the temperature distribution at both the horizontal walls.These temperature perturbations are assumed to be non-uniform Gaussian
random processes satisfying a prescribed correlation function. By using the Monte Carlo method we obtain stochastic bifurcation
diagrams for the Nusselt number near the classical onset of convective instability. These diagrams show that random perturbations
render the bifurcation process to convection imperfect, inagreement with known results. In particular, the pure conduction state
does no longer exist, being replaced by a quasi-conduction regime. We have observed subcritical andnearly supercriticalquasi-
conduction stable states within the range of Rayleigh numbers Ra = 0 − 4000. This suggests that random perturbations in the
temperature distribution at the horizontal walls of the cavity can extend the range of stability of quasi-conduction states beyond the
classical bifurcation pointRac = 2585.02. Analysis of the stochastic bifurcation diagrams shows the presence of a stochastic drift
phenomenon in the heat transfer coefficient, especially in the transcritical region. Such stochastic drift is investigated further by
means of a sensitivity analysis based on functional ANOVA decomposition.

1. Introduction

The classical stability theory of Rayleigh-Bénard convec-
tion in an infinite layer of fluid confined between two hori-
zontal isothermal walls with constant but unequal temperatures
predicts that the amplitude of the motion undergoes a bifurca-
tion as the Rayleigh number passes through the critical value
Rac = 1707.8 (see, e.g., [1, 2]). Such bifurcation characterizes
the transition between a pure conduction state and convection.
If the flow is laterally confined by rigid and perfectly insulating
sidewalls then the critical Rayleigh number usually increases
[3, 4, 5, 6] due to thestabilizing effectsof the finite geometry.
Furthermore, if there is small heat transfer through these side-
walls so that the boundary conditions are inconsistent witha
state of no-motion, then the bifurcation leading to convection
is, in general, replaced by asmooth transitionto finite ampli-
tude flow [7]. Such a smooth transition has been also predicted
theoretically for thermal convection in an infinite fluid layer
between two rigid walls with different mean temperatures and
smallspatially periodic perturbations [8]. Since then, a consid-
erable research effort has focused on examining the stability of
different types of natural convective flows subject to determin-
istic boundary conditions [9, 5, 10, 11, 12]. However, not as
much work has been done for the case when the boundary con-
ditions are random processes offinite amplitude, although these
results would bear upon the importance of ignoring uncertainty
when applying classical stability results in real situations, both
in laboratory experiments and elsewhere.

Thus, the purpose of the present paper is to examine the
effects of temperature perturbations on the classical Rayleigh-
Bénard stability problem, namely an unstably stratified fluid
contained between two smooth horizontal walls with different

mean temperatures. In particular, we will study the prototype
problem of a square enclosure having perfectly insulating lat-
eral sidewalls and determine how the random perturbations in
the temperature distributions at the horizontal walls affect the
stability and the branch points obtained from classical bifur-
cation analysis. Clearly, when no variations occur along the
boundaries convection is possible only when the Rayleigh num-
ber is greater than the classical critical valueRac = 2585.02
[6, 5, 13]. However, when random temperature variations do
occur at the horizontal walls, the bifurcation process leading
to convection becomesimperfect[14] and the subcritical pure
conduction state no longer exists, being replaced by aquasi-
conductionregime [8]. This type of flow is characterized by a
finite - though perhaps small - velocity field and it can be ob-
served even at low values of Rayleigh numbers.

Many important questions can be addressed in the context
of stochastic thermal convection driven by random boundary
conditions. For instance: how do the random temperature per-
turbations affect stability and branch points obtained from clas-
sical bifurcation analysis? Is there any connection between the
stochastic properties of the temperature perturbations - such as
correlation length and amplitude - and flow stability? Is there
a preferential correlation length enhancing the fluid motion and
the heat transfer? Is it possible to obtain realizations of sta-
ble supercritical quasi-conduction states? In this paper we will
provide an answer to all these questions by employing a Monte
Carlo numerical approach [15, 16] and ANOVA decomposition
[17, 18, 19, 20].

This paper is organized as follows. In section 2 we formu-
late the governing equations of the system, i.e., the Oberbeck-
Boussinesq approximation to convection via the vorticity trans-
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Figure 1: Schematic of the dimensionless geometry and dimensionless temper-
ature boundary conditions. The random perturbationsg1 andg2 are assumed
to be zero mean Gaussian processes. The velocity boundary conditions are of
no-slip type, i.e.,ψ = ∂ψ/∂x = ∂ψ/∂y = 0 at the solid walls.

port equation [21, 22]. In section 3 we characterize the random
temperature perturbations at the horizontal walls of the cavity
in terms of a Karhunen-Lòeve expansion satisfying a prescribed
Gaussian correlation function. In section 4 we investigatethe
effects of these perturbations - parametrized in terms of their
correlation length and amplitude - on the onset of convective
instability and we determine useful stochastic bifurcation dia-
grams for the Nusselt number near the onset of convective insta-
bility. The existence of supercritical quasi-conduction states is
discussed in section 5. By using the ANOVA method in section
6 we study the sensitivity of the integrated Nusselt number with
respect to variations in the amplitude of different harmonics ap-
pearing in the random temperature distributions at the horizon-
tal walls. This allows us to identify the most effective spatial
frequency enhancing the heat transfer coefficient. Finally, the
main findings and their implications are summarized in section
7. We also include two brief appendices dealing with the inte-
gral representation of the Oberbeck-Boussinesq equationsand
the description of the ANOVA technique for sensitivity analy-
sis, respectively.

2. Governing equations

Let us consider the two-dimensional steady state dimen-
sionless form of the Oberbeck-Boussinesq approximation via
the vorticity transport equation in streamfunction-only formu-
lation

−∂ψ
∂y

∂
(
∇2ψ

)

∂x
+
∂ψ

∂x

∂
(
∇2ψ

)

∂y
= −Pr∇4ψ + RaPr

∂T
∂x

, (1)

∂ψ

∂y
∂T
∂x
− ∂ψ
∂x

∂T
∂y
= ∇2T , (2)

whereψ(x, y;ω) andT(x, y;ω) denote the streamfunction and
the temperature fields whileRa and Pr are the Rayleigh and
the Prandtl numbers, respectively. The variableω appearing
in ψ(x, y;ω) andT(x, y;ω) identifies a possible outcome of the
streamfunction and the temperature for a specific realization of
the random temperature distributions at the horizontal walls.
All the quantities have been made dimensionless by scaling
lengths with the side length of the cavityL, streamfunction with
the kinematic viscosityν, time with L2/ν and temperature with
a reference temperature difference∆Tr , which is defined to be
the difference between the spatial averages of the two temper-
ature processes at the horizontal walls. With this rescaling, the
Rayleigh and the Prandtl numbers are obtained as

Ra=
gβL3∆Tr

αν
, Pr =

ν

α
, (3)

whereg, β andα are the acceleration of gravity, the isobaric
compressibility coefficient and the thermal diffusivity of the
fluid, respectively. We notice, that this type of non-dimension-
alization is not effective when the average temperature is the
same along the boundaries. Indeed, in this case the reference
temperature difference∆Tr becomes 0 but we still could have
convection due to temperature variations at the boundary. In
figure 1 we show a sketch of the geometry and the boundary
conditions associated with the system (1)-(2). As easily seen,
the natural convection problem we are examining is a classical
one, i.e., an incompressible fluid within a square cavity heated
from below and cooled from above. The sidewalls of the cavity
are assumed to be adiabatic while the horizontal walls are sub-
ject to random temperature fluctuations whose rigorous mathe-
matical definition will be given in the subsequent section. The
velocity boundary conditions are assumed to be of no-slip type,
i.e. ∂ψ/∂x = ∂ψ/∂y = 0 at solid walls. At this point it is conve-
nient to transform the non-homogeneous temperature boundary
conditions into homogeneous ones. This is easily achieved by
defining the new field

T∗(x, y;ω)
def
= T(x, y;ω) + (y− 1) (g1 (x;ω) + 1) − yg2 (x;ω) ,

(4)
whereg1 (x;ω) and g2 (x;ω) are random processes satisfying
adiabatic boundary conditions atx = 0 andx = 1, i.e.

∂gi

∂x

∣∣∣∣∣
x=0,1
= 0 , for i = 1,2 . (5)

Equation (4) can be inverted to give

T = T∗ + (1− y) (g1 + 1) + yg2 . (6)

From Eq. (6) we obtain

∂T
∂x

=
∂T∗

∂x
+ y

(
∂g2

∂x
− ∂g1

∂x

)
+
∂g1

∂x
, (7)

∂T
∂y

=
∂T∗

∂y
+ (g2 − g1) − 1 , (8)

∇2T = ∇2T∗ + y

(
∂2g2

∂x2
− ∂

2g1

∂x2

)
+
∂2g1

∂x2
. (9)
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Finally, a substitution of Eqs. (7), (8) and (9) into Eqs. (1)and
(2), respectively, yields the system

−∂ψ
∂y

∂
(
∇2ψ

)

∂x
+
∂ψ

∂x

∂
(
∇2ψ

)

∂y
= −Pr∇4ψ

+RaPr

(
∂T∗

∂x
+ y

(
∂g2

∂x
− ∂g1

∂x

)
+
∂g1

∂x

)
, (10)

∂ψ

∂y

(
∂T∗

∂x
+ y

(
∂g2

∂x
− ∂g1

∂x

)
+
∂g1

∂x

)
=
∂ψ

∂x

(
∂T∗

∂y
+ (g2 − g1) − 1

)

+∇2T∗ + y

(
∂2g2

∂x2
− ∂

2g1

∂x2

)
+
∂2g1

∂x2
.

(11)

The boundary conditions associated with Eqs. (10) and (11) are
now homogeneous. In Appendix A we obtain the integral rep-
resentation of this system in terms of eigenfunctions of proper
eigenvalue problems.

3. Characterization of temperature perturbations at the
horizontal walls

We shall assume that the temperature perturbationsg1 (x;ω)
andg2 (x;ω) are zero mean random processes satisfying adia-
batic boundary conditions atx = 0 andx = 1. In order to rep-
resent these processes let us first consider a suitable orthonor-
mal basis obtained from the Sturm-Liouville eigenvalue prob-
lem [23, 24]

d2φ

dx2
+ a2φ = 0 , with

dφ (0)
dx

=
dφ (1)

dx
= 0 . (12)

The normalized eigenfunctions solving (12) are

φ0(x) = 1 , φn (x) =
√

2 cos(nπx) n = 1,2,3, ... (13)

Thus, ifh (x;ω) is a zero-mean process in [0,1] satisfying adia-
batic boundary conditions atx = 0 andx = 1, then we have the
following spectral representation1 [25]

h (x;ω) = σ
∞∑

k=1

ak (ω) φk (x) , (14)

whereσ is a real parameter that characterizes theamplitudeof
the process while

ak (ω) =
1
σ

∫ 1

0
h (x;ω) φk (x) dx (15)

are uncorrelated random variables. The autocorrelation ofthe
processh (x;ω) has the obvious representation

C
(
x, x′

) def
=
〈h (x;ω) h (x′;ω)〉

σ2
=

∞∑

n=1

〈a2
n〉φn (x) φn

(
x′
)
, (16)

1Note that all the basis functionsφk(x) (exceptφ0) integrate to zero and
satisfy adiabatic boundary conditions atx = 0 andx = 1.

where〈·〉 denotes the average with respect to the joint probabil-
ity measure of the variables{ak(ω)}. An important question at
this point is: if we arbitrarily prescribe a symmetric autocorre-
lation function, sayC∗(x, y), can we determine a set of uncor-
related random variablesa∗k (ω) such that (16) is satisfied? The
answer is obviously affirmative, provided the prescribed auto-
correlation satisfies the boundary conditions

∂C∗(x, y)
∂x

∣∣∣∣∣
x=0,1
= 0 , ∀y ∈ [0,1] (17)

as well as the zero-mean constraint
∫ 1

0
C∗(x, y)dx= 0 ∀y ∈ [0,1] . (18)

If C∗(x, y) does not satisfy such conditions then it is possible
to enforce them through projection. To this end, let us first
consider the (positive) Fourier coefficients

〈b2
n〉

def
=

∫ 1

0

∫ 1

0
C∗

(
x, x′

)
φn (x) φn

(
x′
)
dxdx′ , n ≥ 1 (19)

obtained by projecting the arbitrarily prescribed kernelC∗(x, x′)
onto the basis{φk}. This operation basically removes every spa-
tial gradient at the boundariesx = 0 andx = 1 and makes the as-
signed correlation zero spatial mean, in the sense of (18). Next,
let us consider the spectral expansion of the kernelC∗ (x, x′) in
terms of its (positive) eigenvaluesλk and eigenfunctionsψk

C∗
(
x, x′

)
=

∞∑

k=1

λkψk (x)ψk
(
x′
)
. (20)

A substitution of this expression into (19) immediately yields

〈b2
n〉 =

∞∑

k=1

λk

[∫ 1

0
ψk (x) φn (x) dx

]2

, n ≥ 1 . (21)

At this point it is easy to check that if{ξk(ω)} is any set of zero-
mean and uncorrelated random variables with unit variance (i.e.
〈ξ2

k〉 = 1) then the process

h (x;ω) = σ
∞∑

k=1

〈b2
k〉1/2ξk (ω) φk (x) (22)

satisfies the boundary conditions atx = 0 andx = 1 as well as
the zero spatial mean constraint and it has the following corre-
lation function

C̃∗
(
x, x′

)
=

∞∑

n=1

〈b2
n〉φn (x) φn

(
x′
)
. (23)

The technique just discussed can be considered as particular
case of thespectral transformation method[26, 27] where an
assigned correlation kernel is generated by assigning the spec-
trum relatively to a specified orthogonal basis. In this paper we
will employ the following Gaussian correlation function (see
[28])

C∗
(
x, x′

)
= exp

[
−6

(x− x′)2

l2c

]
. (24)
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Figure 2: (a) Relative energy of a truncated Karhunen-Loève expansion of the
temperature processes at the horizontal walls as a function of the number of
modes retained in the representation for different correlation lengths. We also
show the relative energy cutoff set at 95% (dashed line). (b) Samples of temper-
ature perturbations at lower and upper horizontal walls forcorrelation lengths
lc = 1 (−−), lc = 0.5 (−·) andlc = 0.1 (−). The perturbation amplitude here is
set at 5% of the reference temperature difference.

lc ∞ 2 1 0.5 0.25 0.1 0.05 0.025 0.01
M 1 2 3 5 9 22 44 87 199

Table 1: Effects of correlation length on the dimensionality of the temperature
representation at each horizontal boundary. The energy cutoff is set at 95% of
the total energy of the process.

This allows us to represent the temperature perturbationsg1 and
g2 shown in figure 1 as

gi (x;ω) = σ
M∑

k=1

〈b2
k〉1/2ξ

(i)
k (ω) φk (x) , i = 1,2 (25)

whereξ(i)
k (i = 1,2; k = 1,2, ...,M) are zero-mean uncorre-

lated random variables with unit variance. In this paper we
will assume thatξ(i)

k are standard Gaussian variables. Several
samples of the processes (25) are shown in figure 2 (b) for dif-
ferent correlation lengthslc and perturbation amplitudeσ set at
5% of reference temperature difference between the horizontal
walls. Physically, this means, e.g., a temperature perturbation
with amplitude 1 K for temperature differences of about 20 K.
We remark that the truncation process in the series expansion

(25) has to be performed with some care, in such a way that the
energy of the neglected modes is negligible. To this end, we
examine the relative energy of the temperature perturbations

ef (M)
def
=

E f (M)

E f (∞)
, where E f (M)

def
=

M∑

n=1

〈b2
n〉 (26)

and choose the total number of termsM in such a way thatef is
greater than a specifiedcutoff value. In figure 2 (a) we show the
plots ofef (M) corresponding to different dimensionless corre-
lation lengths while in table 1 we report on the dimensionality
M - i.e. the total number of terms - of the spectral representa-
tion (25) for a 95% cutoff threshold. We notice that as the cor-
relation length goes to zero the temperature perturbation at the
boundaries approaches an independent increment process [29].
Even for temperature perturbations having correlation length lc
about 0.1 (scaled on the side length of the cavity) the number

of expansion terms for the effective representation of the pro-
cess becomes relatively large. Specifically, since we have two
random boundaries, the caselc = 0.1 results in a stochastic
system forced by 44 (22+ 22) random variables (see table 1).
The numerical simulation of these high-dimensional problems
requires appropriate techniques [20, 30, 31, 32, 33, 34, 35,36].
In this paper we will employ a Monte Carlo method but also
polynomial chaos with adaptive ANOVA can be used [19].

4. Stochastic bifurcations and stability of steady state con-
vection

In previous work [6] we have obtained bifurcation diagrams
for natural convective flows within square cavities subjectto
uniform temperature boundary conditions. We have observed
the coexistence of multiple stable steady states, in agreement
with other results [12, 11, 10, 9], for the same values of Rayleigh
and Prandtl numbers, the final asymptotic state depending on
the initial flow condition. For random boundary conditions,
multiple stable states can still exist but the mechanism of their
formation is substantially different. Indeed, as we can see from
Eqs. (10) and (11), the random perturbationsg1 andg2 break
the symmetry of the system, i.e., the steady-state convection
pattern in general do not satisfy the discrete symmetry group
described in [6]. Therefore, the symmetry-induced multiplicity
of supercritical states in this case is replaced by a more physical
ensemble of flows in a one-to-one correspondence with specific
boundary and initial conditions2. We have identified many dif-
ferent steady-state stable convection patterns and corresponding
temperature fields. These includesubcriticalandsupercritical
quasi-conduction states for which the kinetic energy of theflow
turns out to be very small. In figure 3 we show typical temper-
ature fields and flow patterns corresponding to specific realiza-
tions of the temperature boundary conditions. The rich variety
of flows associated with random boundary conditions should
be compared with classical results of convection for uniform
temperature distributions (see, e.g., [6, 5]) where only one sub-
critical solution (pure conduction) and one supercriticalsolu-
tion (one-roll pattern) can develop within the range of Rayleigh
numbers considered in this paper, i.e.Ra= 0− 4000.

4.1. Bifurcation diagrams for the Nusselt number

As is well known, a sudden change in the slope the Nus-
selt number versus the Rayleigh number usually identifies a
transition between different flow states. In the particular case
of uniform temperature boundary conditions the first one of
these transitions characterizes the onset of convective instabil-
ity [12, 5] and, for the geometry shown in figure 1, it can be
clearly identified atRac = 2585.02. However, in the presence
of random temperature perturbations along the horizontal walls
of the cavity, the precise determination of the critical Rayleigh

2We remark that for very specific realizations of the temperature processes
at the horizontal walls, convection can still satisfy the discrete symmetry group
described in [6]. However, from a statistical viewpoint theprobability that this
happens is zero.
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Figure 3: Typical temperature fields (top row) and streamlinesof the velocity field superimposed to the modulus of velocity (lower row) for specific realizations
of the temperature distribution at the horizontal walls of the cavity. The amplitude of the temperature perturbations is set at 5% of the reference temperature
difference while the correlation length islc = 0.1 (a),lc = 0.5 (b) lc = 0.25 (c). Show are: (a) asubcriticalquasi-conduction state atRa= 1946, (b) asupercritical
quasi-conduction stateRa= 2650 and (c) a fully developed one-roll convection pattern at Ra= 3500.

number can be rather difficult. In fact, as pointed out by Ahlers
et al. in [14], such perturbations render the bifurcation pro-
cess to convectionimperfectand, strictly speaking, a critical
Rayleigh number does not exist in the usual sense since con-
vection occurs forall values ofRa. However, as the Rayleigh
number approaches the classical critical value, the amplitude of
convection increases greatly, and therefore it still makessense
to define a “critical” regime near the classical bifurcationpoint.

In figure 4 we show the bifurcation diagrams for the inte-
grated Nusselt number

Nu(ω)
def
=

∫ 1

0

∂T(x, y;ω)
∂y

∣∣∣∣∣
y=0

dx (27)

versus the Rayleigh number. These diagrams are obtained by
first sampling the temperature distribution at the horizontal walls
for different perturbation amplitudes and correlation lengths and
then compute the correspondingstable3 convective flow through
the Galerkin method outlined in Appendix A. In the plots of
figure 4 we also include the classical bifurcation diagram for
deterministicuniform boundary conditions (dashed lines). This
case corresponds tolc = ∞. Note that the bifurcation diagrams
obtained for temperature perturbations with correlation lengths

3We report only onstablesteady states. Otherunstablestates are present as
well but these are not shown in figure 4.

lc = 1 and lc = 0.5 are very similar. This can be explained
by noting that the temperature perturbations at the horizontal
walls of the cavity are quite similar to each other in these cases
(see figure 2 (b)). Among many possible convection patterns,
our numerical results show that it is possible to obtain realiza-
tions of nearly supercritical(stable) quasi-conduction states.
In other words, it seems that random perturbations can stabi-
lize the quasi-conduction state beyond the classical bifurcation
point. This rather surprising result will be discussed further in
the next section.

4.2. Statistical analysis of the heat transfer

In figure 5 (a) we plot the probability density function of the
integrated Nusselt number at Rayleigh number 3000 (Pr = 0.7)
for boundary perturbations with different correlation lengths.
Each probability density is estimated through anon-parametric
kernel regression method based on the available temperature
samples. Specifically, we have computed 105 flow samples at
many different Rayleigh numbers, correlation lengths and per-
turbation amplitudes of boundary processes. As seen from fig-
ure 5 (a), random temperature perturbations can increase orde-
crease the averaged heat transfer relatively to the uniformcase.
In a mean sense, however, it turns out that the heat transfer is en-
hanced, especially in the transcritical region (see figure 6). Sim-
ilarly, in figure 5 (b), we plot the probability density functions
of the integrated Nusselt number at different Rayleigh numbers

5
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Figure 4: Bifurcation diagrams near the onset of convective instability for random temperature perturbations of different amplitudesσ and correlation lengthslc. Shown are the integrated Nusselt numbers versus the
Rayleigh number for different solution samples. The dashed line in each plot represents the classical bifurcation diagram obtained fordeterministicuniform temperature conditions. In this case the critical Rayleigh
number isRac = 2585.02.
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Figure 5: (a) Probability density functions of the integrated Nusselt number at
Rayleigh numberRa= 3000 for boundary perturbations of different correlation
lengths. The perturbation amplitude is set at 5% of the reference temperature
difference. The vertical line indicates the deterministic Nusselt number atRa=
3000 for uniform boundary conditions. (b) Probability density functions of the
integrated Nusselt number at different Rayleigh numbers:Ra = 1000 (−−),
Ra = 2500 (· · · ), Ra = 3000 (−) andRa = 4000 (− · −). The temperature
perturbations have correlation lengthlc = 0.5 and amplitudeσ set at 5% of the
reference temperature difference.

for boundary perturbations with correlation lengthlc = 0.5 and
amplitudeσ set at 5% of the reference temperature difference.
We notice that atRa = 1000 the probability density ofNu is
rather peaked aroundNu = 1, suggesting a high probability
of quasi-conduction regime. In the transcritical region wealso
observe a variation of the probability density function that be-
comes approximately Gaussian when convection is fully devel-
oped.

Note that for supercritical flows, the probability density of
the integrated Nusselt number iscontinuously supported. This
suggests that for the correlation lengths and the perturbation
amplitudes considered in this paper it seems that there exist
only one possible supercritical convection pattern, i.e. aone-
roll flow. In other words, for the correlation lengths, the per-
turbation amplitudes and the range of Rayleigh numbers con-
sidered in this paper the ensemble of stable flows is continuous
and composed by one-roll patterns, with the exception of some
subcritical quasi-conduction states. Next, we determine the av-
erage as well as the range of the integrated Nusselt number asa
function of the Rayleigh number. This study helps us in clarify-
ing if the correlation length of the temperature perturbations at
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Figure 6: (a) Mean of the integrated Nusselt number versus theRayleigh num-
ber for boundary perturbations of different correlation lengths. The perturba-
tion amplitude is set at 5% of the reference temperature difference in all cases.
We see that random temperature perturbations induce astochastic driftphe-
nomenon in the transcritical region. (b) Integrated Nusseltnumber versus the
dimensionless kinetic energy (ec) of the fluid at Prandtl number 0.7. The am-
plitude of the boundary perturbations is set at 5% and the correlation length
is lc = 1. We show the mean (· · · ) and the min-max band (−) which is
parametrized with the Rayleigh numberRa. The curves at constantRa (−−)
are simple lines due to the very high correlation coefficient betweenNu andec

at Prandtl number 0.7.

the horizontal walls has an influence on the averaged heat trans-
fer within the cavity. To this end we examine the case where the
perturbation amplitude is set at 5% of the reference temperature
difference. The results of our computations are shown in figure
6 (a). As easily seen, random temperature perturbations induce
a stochastic driftin the transcritical region yielding to an in-
crement of the average heat flow. This increment depends on
the correlation length of the temperature processes, i.e. there
are preferential values of temperature correlation lengths that
trigger convection patterns that are more effective for what con-
cerns the heat transfer. Note, however, that the heat transfer
enhancement is rather weak in all cases we have considered,
quantifiable in approximately 10% within the transcriticalre-
gion. Also, when convection is fully developed the stochas-
tic drift disappears and the probability density of the integrated
Nusselt number becomes very similar to a Gaussian distribution
(see figure 5 (b)).

It is interesting to study the relation between the integrated
Nusselt number and the dimensionless kinetic energy of the
fluid in more detail. Our first finding is that the correlation coef-
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ficient between these two quantities is approximately one inall
cases we have considered in this paper. This suggests that there
exists a linear relation between the Nusselt number and dimen-
sionless kinetic energy for stochastic convection within square
cavities at fixed Rayleigh number Prandtl numberPr = 0.7.
This relation is shown in figure 6 (b) where we plot the inte-
grated Nusselt number versus the kinetic energy of the fluid for
different Rayleigh numbers. The existence of a linear relation
between the integrated Nusselt number and the dimensionless
kinetic energy implies that heat transfer is primarily determined
by advection, even in the quasi-conduction regime.

5. Subcritical and supercritical quasi-conduction states

The existence of subcritical quasi-conduction states has been
theoretically predicted by Kelly & Pal in [8] for an infinite layer
of fluid with small periodic temperature variations at the hor-
izontal walls. By means of perturbation analysis, they have
found that convection can occur even for Rayleigh numbers less
than the critical one (Rac = 1707.8 for the infinite layer). The
corresponding Nusselt number in this case is a function of the
Rayleigh number, the Prandtl number and the modulation am-
plitude. The perturbation approach of Kelly & Pal, however,
cannot be easily extended to the present flow problem because
the random boundary conditions depend on many variables (see
table 1) and it is not easy to select a significant perturbation pa-
rameter quantifying the “amplitude of convection”4. A criterion
to identify a quasi-conduction state may be based on the analy-
sis of the dimensionless temperature field within the cavity. In
particular, a comparison between the pure conduction solution
and the convection solution can reveal if there is a significant
temperature transport associated with the fluid motion. The
steady state pure conduction solution can be easily obtained by
integrating the Poisson’s equation

∇2T∗ = −y

(
∂2g2

∂x2
− ∂

2g1

∂x2

)
− ∂

2g1

∂x2
(28)

with homogeneous boundary conditions (T∗ = 0 at the horizon-
tal walls and∂T∗/∂x = 0 at the sidewalls of the cavity). Equa-
tion (28) follows from Eq. (2) by settingψ ≡ 0. The analytical
solution to (28) can be represented in terms of an eigenfunction
expansion as

T∗ (x, y;ω) =
∞∑

k=1

Γk (x, y)

γ2
k

∫ 1

0

∫ 1

0
F (x′, y′)Γk

(
x′, y′

)
dx′dy′ ,

(29)
where

F (x, y) = y

(
∂2g2

∂x2
− ∂

2g1

∂x2

)
+
∂2g1

∂x2
. (30)

4From a theoretical viewpoint, a supercritical stable statemight be inves-
tigated by analyzing the Oberbeck-Boussinesq system, in anyrepresentation.
In particular, one can consider the integral representation obtained in appendix
A, expand the solution nearak ≡ 0 andbk ≡ 0 and try to determine whether
there exist a set of coefficients for which the real part of the largest Jacobian
eigenvalue is negative. This leads to a complex relation between the forcing
(buoyancy) term in the Navier-Stokes equations and the Rayleigh number.
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Figure 7: Threshold criterion for the identification of quasi-conduction states.
These diagrams refer to the case where the boundary perturbations have cor-
relation lengthlc = 0.5 and perturbation amplitude set at 5% of the reference
temperature difference. We show the mean Nusselt number (−), the minimum
and the maximum Nusselt numbers (−−) and the classical bifurcation diagram
(· · · ) obtained for spatially-uniform deterministic boundary conditions. Figure
(b) is a zoom-in of figure (a).

In these equationsγ2
k and Γk denote the eigenvalues and the

eigenfunctions of the Helmholtz operator, respectively (see Ap-
pendix A.1 for further details). Finally, the temperature field
associated with the pure conduction state corresponding tothe
perturbationsg1(x;ω) andg2(x;ω) is obtained by substituting
Eq. (29) into Eq. (6). A simpler criterion to identify a quasi-
conduction regime is based on the integrated Nusselt numberit-
self. In practice, we can define a threshold forNubelow which
we can state that convection is neglectable. At Prandtl number
0.7, this is equivalent to selecting a threshold for the dimen-
sionless kinetic energy of the fluid. In fact, as we have pointed
out in the previous section, the integrated Nusselt number and
the dimensionless kinetic energy of the fluid are extremely well
correlated in all cases we have considered in this paper. The
selection of a threshold value for the integrated Nusselt num-
ber, however, introduces some arbitrariness in the definition of
quasi-conduction states. This arbitrariness is of the sametype
as that of defining a critical Rayleigh number in the presenceof
random boundary conditions.

Given these remarks, let us set the thresholdNutr = 1.02
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Figure 8: Probability that a stable quasi-conduction statedevelops within the
cavity as a function of the Rayleigh number and the correlation length of the
temperature processes at the horizontal walls of the cavity.The perturbation
amplitude is set at 5% of the reference temperature difference. Figure (b) is a
zoom-in of figure (a).

for quasi-conduction states. This choice is based on a careful
analysis of the temperature fields of many flow samples corre-
sponding to different realizations of boundary conditions. It is
clear that the thresholdNutr = 1.02 discriminates among those
flows with heat transfer different at most by 2% with respect
to pure conduction. In figure 7 we sketch the procedure for
the identification of quasi conduction-states according tothe
proposed criterion. Clearly, the thresholdNutr = 1.02 is also
associated with a quasi-conduction kinetic energy band. An
analysis of the stochastic flow field near the onset of convec-
tion reveals that random temperature perturbations at the hor-
izontal boundaries can stabilize anearly supercriticalquasi-
conduction regime. This region is indicated in figure 7 (b) for
boundary perturbations having correlation lengthlc = 0.5 and
perturbation amplitude set at 5% of the reference temperature
difference. Thus, random perturbations basically extend the do-
main of stability of quasi-conduction states beyond the classi-
cal bifurcation point. The flow field and the temperature of a
supercritical quasi-conduction state is shown in figure 3 (b) at
Rayleigh number 2650. An important question at this point
is: What is the probability that a supercritical stable quasi-
conduction state develops within the cavity?

In order to answer this question, in figure 8 we plot the
probability of occurrence of quasi-conduction states within the
whole range of Rayleigh number considered in this paper, for
boundary perturbations of different correlation lengths. This
probability function is estimated by counting the relativenum-

ber of quasi-conduction states, i.e. the states whose energy
is within the quasi-conduction energy band, for each Rayleigh
number. As easily seen, the probability curve is monotonic and
it reaches the value zero (impossible event) approximatelyat
Ra ≃ 2800 in all cases. We also notice that the occurrence of
a nearly supercritical quasi-conduction state is rather unlikely
(see figure 8 (b)) and it depends on the correlation length of the
temperature perturbations at the horizontal walls. In particu-
lar, smaller correlation lengths yield to higher probabilities of
supercritical quasi-conduction states. Clearly, all these results
depend on the choice of the quasi-conduction energy band. In
other words, a different selection of the threshold for the Nusselt
number or the kinetic energy of the fluid yields quantitatively
different but quantitatively similar conclusions.

6. Sensitivity analysis

In this section we employ the ANOVA technique [20, 17,
37, 38, 32] (see also appendix B) in order to quantify which
harmonic in the Fourier series representation of the random
temperature boundary conditions enhances the heat transfer and
triggers the transition from quasi-conduction to fully developed
convection regimes. This sensitivity study allows us to make
inferences about the most important unstable modes and, in
some sense, it is similar to the perturbation approach adopted
by Kelly & Pal [8] for the infinite fluid layer.

Let us consider an ANOVA expansion of the Nusselt num-
ber in terms of the set of random variables representing theam-
plitudeof boundary conditions

Nu(ζ) =Nu0 +

2M∑

i=1

Nui (ζi) +
2M∑

i< j

Nui j (ζi , ζ j)

+

2M∑

i< j<k

Nui jk (ζi , ζ j , ζk) + · · · , (31)

where
ζ

def
= [ξ(1)

1 , ..., ξ
(1)
M , ξ

(2)
1 , ..., ξ

(2)
M ] . (32)

We recall thatM depends on the spatial correlation length of
the temperature process. Specifically, forlc = 0.5 - which is the
case we examine here - we obtain a total number of 10 (5+ 5)
random variables. In other words, thenominal dimension[32]
of the parameter space here is 10 (see table 1).

The sensitivity (in the sense of Sobol [39]) of the integrated
Nusselt number with respect to the amplitude of the boundary
modes can be studied as a function of the Rayleigh number.
This provides an insight, e.g., on which harmonic of the temper-
ature distribution at the boundaries (first-order interaction) or
combination of harmonics (higher-order interactions) aremost
important in the transition from quasi-conduction to fullyde-
veloped convection. The results of this study are summarized
in figure 9 where we plot the averaged global sensitivity factors
for first-, second- and third-order interaction terms correspond-
ing to all five parameters [ξ(1)

1 , ..., ξ
(1)
5 ] defining the random tem-

perature process at the lower horizontal wall. These sensitivity
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Figure 9: Averaged global sensitivity indices of different terms in the ANOVA
decomposition of the Nusselt number for variations in the amplitude of the har-
monics representing the temperature boundary condition at the lower horizontal
wall. Shown are sensitivities of (a) first-order, (b) second-order and (c) third-
order interaction terms versus the Rayleigh number. The vertical dashed line
identifies the classical bifurcation point atRac = 2585 . It is seen that the tran-
sition from quasi-conduction states to fully developed convection is captured
by the second- and the third-order interaction terms. Also, the highest sensitiv-
ity of Nuwithin the transcritical region is achieved by the variablenumber “1”.
This variable characterizes the amplitude of the lowest frequency mode in the
Fourier expansion of the temperature boundary condition, i.e., cos(πx). Thus,
the heat transfer enhancement in the transcritical region (i.e. the stochastic drift)
is mainly influenced by such harmonic.

factors are explicitly defined as

Z(1)
i

def
=
σ2[Nui ]
σ2[Nu]

, (33)

Z(2)
i

def
=

∑

j

σ2[Nui j ]

σ2[Nu]
, (34)

Z(3)
i

def
=

∑

j,k

σ2[Nui jk ]

σ2[Nu]
, (35)

whereNui , Nui j andNui jk are the interaction terms in Eq. (31)
while σ2[·] denotes the variance operator (see Appendix B for
further details).

As seen from the plots ofZ(k)
i (k = 1,2,3), the subcritical

quasi-conduction region (Ra< Rac) is sensitive to variation in
the amplitude of all the boundary modes. Beyond the classical
bifurcation point we also see that there is transcritical region
(betweenRa ≃ 2700 andRa ≃ 3000) which is very sensitive
to variations in the amplitude of the first boundary mode, i.e.
cos(iπx). We recall that this is the region where we have the
stochastic drift phenomenon for the Nusselt number (see sec-
tion 4.2). Therefore, we can conclude that the average heat
transfer enhancement in the transcritical region is due to alow
frequency boundary mode.

Note that the global sensitivity indices associated with the
first-order interaction terms do no allow us to identify the flow
transition in a clear manner. This objective is achieved indeed
by looking at the higher-order interaction terms. In fact, as seen
from figure 9(b) and figure 9(c) the global sensitivity factors
of second- and third-order interactions terms undergo a sud-
den jump exactly in correspondence with the classical bifurca-
tion point. This suggests that the interaction between different
boundary modes is switched on by the transition and the result-
ing flow becomes rather sensitive to variations in the amplitude
of the terms associated with the corresponding harmonics. We
also notice that there is a bulk phenomenon in the sensitivity
factors within the region of fully developed convection, i.e. for
Ra> 3000. This suggests that in such region the Nusselt num-
ber is equally sensitive to variations in the amplitude of differ-
ent harmonics of the temperature expansion at the lower wall.
This is expected since the heat transfer in the fully developed
convection region in primarily determined by advection.

7. Summary

We have studied the Rayleigh-Bénard stability problem for
fluid confined within a square enclosure subject to non-uniform
random perturbations in the temperature distribution at the hor-
izontal walls. These temperature perturbations were modelled
as Gaussian processes satisfying a Gaussian correlation func-
tion. We have simulated the Oberbeck-Boussinesq equations
and computed many ensembles of realizations of the natural
convective flow within the cavity by sampling the temperature
processes at the boundaries for different correlation length and
amplitude. This allowed us to obtain stochastic bifurcation di-
agrams for the integrated Nusselt number near the classicalon-
set of convective instability. These diagrams show that random
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perturbations render the bifurcation process to convection im-
perfect, in agreement with known theoretical results [14].In
particular, the pure conduction state does no longer exist,being
replaced by a quasi-conduction regime. We have observed sub-
critical andnearly supercriticalquasi-conduction stable states
within the range of Rayleigh numbersRa = 0 − 4000. This
suggests that random temperature perturbations at the horizon-
tal walls can extend the range of stability of quasi-conduction
states beyond the classical bifurcation point. However, the prob-
ability that these states develop within the cavity is rather low.
A statistical analysis of the bifurcation diagrams near theclas-
sical onset of convection shows the existence of a stochastic
drift phenomenon in the heat transfer coefficient, especially in
the transcritical region. The increment we have observed in
the mean Nusselt number is about 10% for temperature pertur-
bations having a correlation length comparable with the side-
length of the cavity. In order to obtain a better understanding of
this phenomenon, we have performed a sensitivity analysis of
the integrated Nusselt number based on the functional ANOVA
decomposition. This allowed us to identify which harmonicsin
the random temperature distributions at the horizontal walls are
most effective in enhancing the heat transfer coefficient. The
sensitivity factors corresponding to first-, second- and third-
order interaction terms suggest that the lowest-wavelength har-
monic is the most effective. In addition, the flow transition from
quasi-conduction to fully developed convection is found tobe
accurately captured by the second- and the third-order interac-
tion terms.

Acknowledgements

This work was supported by OSD-MURI grant FA9550-
09-1-0613, DOE grant DE-FG02-07ER25818 and NSF grant
DMS-0915077.

A. Integral representations

Let us consider an expansion of random temperature and
velocity fields in terms of normalized eigenfunctionsψ̂n (x, y)
andΓ̂m (x, y)5

ψ (x, y;ω) =
Nv∑

n=1

an (ω) ψ̂n (x, y) , (36)

T∗ (x, y;ω) =
Nt∑

m=1

bm (ω) Γ̂m (x, y) . (37)

The advantage of using such representations is that they au-
tomatically satisfy all the boundary conditions as well as the
continuity equation [40, 21]. A substitution of Eq. (36) and
Eq. (37) into (10)-(11) and subsequent Galerkin projectiononto
ψ̂k and Γ̂k, respectively, gives the following system of alge-
braic equations (repeated indices are summed unless otherwise
stated)

anamBnmk− PranCnk + RaPr(bnDnk +Nk) = 0 , (38)

5These functions are obtained in Appendices A.1 and A.2

−anbmEnmk− an (Fnk + Pnk) − γ2
kbk +Mk = 0 , (39)

where the coefficientsNn,Mk, etc., are defined as

Nk
def
=

∫ 1

0

∫ 1

0

[
y

(
∂g2

∂x
− ∂g1

∂x

)
+
∂g1

∂x

]
ψ̂kdxdy,

Mk
def
=

∫ 1

0

∫ 1

0

[
y

(
∂2g2

∂x2
− ∂

2g1

∂x2

)
+
∂2g1

∂x2

]
Γ̂kdxdy,

Ank
def
=

∫ 1

0

∫ 1

0
∇2ψ̂nψ̂kdxdy, Cnk

def
=

∫ 1

0

∫ 1

0
∇4ψ̂nψ̂kdxdy,

Dnk
def
=

∫ 1

0

∫ 1

0

∂Γ̂n

∂x
ψ̂kdxdy, Fnk

def
=

∫ 1

0

∫ 1

0

∂ψ̂n

∂x
Γ̂kdxdy,

Pnk
def
=

∫ 1

0

∫ 1

0


∂ψ̂n

∂y

(
y

(
∂g2

∂x
− ∂g1

∂x

)
+
∂g1

∂x

)

−∂ψ̂n

∂x
(g2 − g1)

 Γ̂kdxdy,

Bnmk
def
=

∫ 1

0

∫ 1

0


∂ψ̂n

∂y
∂∇2ψ̂m

∂x
− ∂ψ̂n

∂x
∂∇2ψ̂m

∂y

 ψ̂kdxdy,

Enmk
def
=

∫ 1

0

∫ 1

0


∂ψ̂n

∂y
∂Γ̂m

∂x
− ∂ψ̂n

∂x
∂Γ̂m

∂y

 Γ̂kdxdy.

Also, γ2
k denote the eigenvalues of the Helmholtz equation (see

Appendix A.1). The nonlinear system (38)-(39) can be solved
numerically with accuracy in order to obtain the Fourier coeffi-
cientsan(ω) andbm(ω) for each realization of the boundary con-
ditions. Once these coefficients are available, the streamfunc-
tion and the temperature fields may be easily recovered from
(36) and (37).

A.1. Temperature expansion
We consider an eigenfunction expansion based on a classi-

cal diffusion problem in Cartesian coordinates

∇2T∗ + γ2T∗ = 0 (40)

with homogeneous boundary conditions

T∗(x,0) = T∗(x,1) =
∂T∗(0, y)

∂x
=
∂T∗(1, y)

∂x
= 0 . (41)

A separation of variables in Eq. (40) gives the following two
Sturm-Liouville problems

d2X
dx2
+ a2X = 0 ,

dX(0)
dx

=
dX(1)

dx
= 0 , (42)

d2Y
dy2
+ b2Y = 0 , Y (0) = Y (1) = 0 , (43)

whose solutions are the well known [23, 24] normalized eigen-
functions

Xn(x) =


1 if n = 0√

2 cos(nπx) if n = 1,2,3, ...
(44)

Ym (y) =
√

2 sin(mπy) m= 1,2,3, ... (45)
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while the eigenvalues are

an = πn for n = 0,1,2, ... , (46)

bm = πm for m= 1,2, ... . (47)

This implies that the eigenvalues of (40) are

γ2
nm = π

2
(
n2 +m2

)
. (48)

Thus, the two-dimensional temperature basis function can be
written as

Γ̂n (x, y) = Xi(n)(x)Yj(n)(y) , (49)

wherei(n) and j(n) are suitable subsequences obtained accord-
ing an ordering ofγ2

i j .

A.2. Velocity expansion

All the velocity boundary conditions are of no-slip type.
This means∂ψ/∂x = ∂ψ/∂y = 0 everywhere at the boundary.
In order to generate a divergence free basis for the velocityrep-
resentation satisfying such boundary conditions it is convenient
to consider the following eigenvalue problem [40, 41, 21, 12]

∂4ψ

∂x4
+
∂4ψ

∂x4
= Λ4ψ , (50)

ψ(x,0) =
∂ψ

∂x
= 0 , ψ(x,1) =

∂ψ

∂x
= 0 , (51)

ψ(0, y) =
∂ψ

∂y
= 0 , ψ(0, y) =

∂ψ

∂y
= 0 . (52)

This eigenvalue problem is symmetric6 and separable. A sub-
stitution of the ansatz

ψ(x, y) = X(x)Y(y) (53)

into (50) yields two equivalent eigenvalue problems forX(x)
andY(y) in the form

d4X
dx4
= α4X , (54)

X(0) = X(1) =
∂X(0)
∂x

=
∂X(1)
∂x

= 0 . (55)

The general integral of (54) is easily found7 as

X(x) = asin(αx) + bcos(αx) + csinh(αx) + dcosh(αx) .

By enforcing the boundary conditions (55) we obtain the fol-
lowing normalized set of eigenfunctions

Xi(x) =



cos[αi (x− 1/2)] / cos[αi/2] −
cosh[αi (x− 1/2)] / cosh[αi/2] i = 1,3,5, ...

sin[αi (x− 1/2)] / sin[αi/2] −
sinh[αi (x− 1/2)] / sinh[αi/2] i = 2,4,6, ...

6The spectral theory for linear operators in a Hilbert space guarantees that
the eigenfunction set is thencomplete.

7It is sufficient to consider a solution in the formX(x) = eγx to obtain, by
substitution,γ4 = α4, i.e.,γ = {α,−α, iα,−iα}

where the eigenvaluesαi are solutions of the transcendental
equation

tanh
(
αi

2

)
=

{
− tan(αi/2) for i = 1,3,5, ...
tan(αi/2) for i = 2,4,6, ...

(56)

A similar solution can be obtained forY(y). A normalized basis
for the two-dimensional streamfunction can be obtained as a
tensor product of one-dimensional bases as

ψ̂n (x, y) = Xi(n) (x) Yj(n) (y) , (57)

wherei(n) and j(n) are suitable subsequences obtained accord-
ing to an eigenvalue ordering

Λ4
n = α

4
i(n) + β

4
j(n) . (58)

B. ANOVA decomposition for sensitivity analysis

The key idea of ANOVA is to represent a high-dimensional
function f (x1, x2, · · · , xN) in terms of a superimposition of func-
tions involving a lower number of variables (interaction terms),
and then truncate the series at specific interaction order. Specif-
ically, the ANOVA expansion of anN-dimensional scalar func-
tion f takes the form [42]

f (x1, x2, ..., xN) = f0 +
N∑

i=1

fi(xi) +
N∑

i< j

fi j (xi , x j)

+

N∑

i< j<k

fi jk (xi , x j , xk) + · · · . (59)

The function f0 is a constant. The functionsfi(xi), which we
shall call first-order interactions, give the overall effects of the
variablesxi in f as if they were acting independently of the
other input variables. The functionsfi j (xi , x j) describe the in-
teraction effects of the variablesxi and x j , and therefore they
will be called second-order interactions. Similarly, higher-order
terms reflect the cooperative effects of an increasing number of
variables. From a practical viewpoint, the computation of the
various terms in the ANOVA expansion can be performed by se-
lecting a suitable measure space, e.g., the space ofµ-integrable
functions in the hypercube [0,1]N, whereµ denotes an integra-
tion measure. In this case we have

f0 =
∫ 1

0
· · ·

∫ 1

0
f (x1, ..., xN)dµ(x1, ..., xN) , (60)

fi(xi) =
∫ 1

0
· · ·

∫ 1

0
f (x1, ..., xi−1, xi+1, ..., xN)

dµ(x1, ..., xi−1, xi+1, ..., xN) − f0 , (61)

· · ·

For instance, if the measureµ is selected as

dµ(x1, ..., xN) =
N∏

i=1

dxi (62)
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then we obtain the classical ANOVA-HDMR method [20]. Sim-
ilarly, if we set

dµ(x1, · · · , xN) =
N∏

i=1

δ(xi − ci)dxi , ci ∈ [0,1] (63)

then we obtain the so-calledanchoredANOVA [43] decompo-
sition. The vector (c1, ..., cN) in this case is known asanchor
point and it can be selected according to many different crite-
ria (see, e.g., [18]). The ANOVA representation of a field can
be effectively used as a tool for sensitivity analysis [39, 44].
To this end, let us first recall that all the interaction terms(60),
(61), etc., in the ANOVA expansion (59) are mutually orthogo-
nal with respect to the measureµ. This implies that the variance
of f , here denote asσ2[ f ] is simply the sum of the variances
associated with each interaction term, i.e.,

σ2[ f ] =
N∑

i=1

σ2[ fi ] +
N∑

i< j

σ2[ fi j ] + · · · , (64)

where

σ2[ f ]
def
=

∫
f 2dµ −

(∫
f dµ

)2

. (65)

The integrals appearing in Eq. (64) can be computed by using a
multi-element quadrature formula [32]. Following Sobol [39],
we shall define global sensitivity indices as the ratio between
the variance of each term in the ANOVA decomposition and
the total variance of the functionf , i.e.,

Ri
def
=
σ2[ fi ]
σ2[ f ]

, Ri j
def
=
σ2[ fi j ]

σ2[ f ]
, ... . (66)

From Eq. (64) it easily follows that

N∑

i=1

Ri +

N∑

i< j

Ri j + · · · = 1. (67)

Moreover, we shall define the following averaged global sensi-
tivity indices

Z(1)
i

def
= Ri , Z(2)

i
def
=

∑

j

Ri j , Z(3)
i

def
=

∑

j,k

Ri jk , ... (68)

representing the relative importance of one specific parameter
overall the others at a prescribed interaction level. With the aid
of Eqs. (68) we can study which input variable has more in-
fluence on the response of the system. For instance, we can
quantify which harmonic in the Fourier series representation of
the random temperature boundary conditions triggers the tran-
sition from quasi-conduction to convection or affects the heat
transfer coefficient to the greatest extent.
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